[Total No. of Questions - 9] [Total No. of Pri d Pages - 4] (2066)

16121(J) June-16

B. Tech 6th Semester Examination Optical Communication (NS)

EC-324

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

- **Note**: (i) Attempt five questions in all, select one question from each section A, B, C, D. Section E is compulsory.
 - (ii) Assume suitable data if necessary.

SECTION - A

- 1. (a) Briefly explain historical development of optical fiber communication. (5)
 - (b) How are optical fiber advantageous in communication applications? (5)
 - (c) Give the block diagram of a digital optical fiber communication system and explain the function of each block. (10)
- (a) Explain the term mode of an optical wave guide and discuss about the different modes used in fiber guides.

(5)

- (b) Define relative refractive index difference for an optical fiber and show how it may relate to numerical aperture. (5)
- (c) Explain the term graded index fiber. What are the advantages of using a graded index fiber? (5)

(d) A graced index fiber with a parabolic refractive index profile core has relative index difference of 1% and refractive index at the core axis is 1.47. Find the maximum diameter of the fiber which gives the single mode operation at a wavelength of 1.5µm.

SECTION - B

- (a) Explain scattering effects in optical fibers and indicate the ways in which they can be avoided in optical fiber communication. (10)
 - (b) Derive an expression for the rms pulse broadening due to intermodal dispersion in a multimode step index fiber.
 Compare this with an optimum near parabolic profile graded index fiber.
 - (c) A 10 km optical link consists of a multimode step index fiber with a core refractive index of 1.46 relative index difference of 1%. Find:
 - (i) The delay difference between the slowest and the fastest modes at the fiber output.
 - (ii) RMS pulse broadening due to intermodal dispersion on the link.
 - (iii) Maximum bit rate
 - (iv) Bandwidth length product corresponding to the bit rate. (4)
- 4. (a) Discuss two processes by which light can be emitted from an atom. Give the advantages and drawbacks for the LED in comparison with the injection laser for use as a source in optical fiber communication. (8)
 - (b) State and explain basic principle of laser action in semiconductors.
 (6)

methods. (6)

SECTION - C

5. (a) Discuss in detail p-i-n photodiode. How does it differs from the avalanche photodiode? (10)

- (b) Discuss photo detector noise. Also find the expression of signal to noise ratio at the output of optical receiver. (10)
- (a) Write down and explain the link design equations in a point to point communication link based on power budget and rise time budget considerations. (10)
 - (b) Explain the basic principle of operation of semiconductor optical amplifiers. Give classification of semiconductor optical amplifiers and explain any one in detail. (10)

SECTION - D

- 7. Discuss with the aid of suitable diagrams the measurement of dispersion in optical fibers. Consider both time and frequency domain measurement techniques. (20)
- 8. (a) How are fiber optic sensors classified? Suggest a criterion for designing an intensity modulated sensor. On what factors does the signal developed by the detector depend in this case? (10)
 - (b) Explain the following:
 - (i) Wavelenfth modulated sensor.
 - (ii) Intrinsic and extrinsic sensors. (10)

SECTION - E

- 9. (i) Discuss the three applications of optical fiber.
 - (ii) Whatis Snell's law? Explain total internal reflection. Why is it necessary to meet the total internal reflection inside an optical fiber?
 - (iii) What do you mean by term normalized frequency?
 - (iv) What is waveguide dispersion? Explain.
 - (v) Distinguish between intermodal and intramodal dispersions.
 - (vi) Explain the general requirements for a source in optical fiber communication.
 - (vii) Distinguish between spontaneous and stimulated emission.
 - (viii) Explain long wavelength cutoff.
 - (ix) What is the difference between a regenerator and an optical amplifier? (2)
 - (x) Convert the optical signal power 5mw and 20µw to dBm. (2×10=20)